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The electronic and thermodynamic properties are investigated in cubic crystal structures (B1, B2 and B3) of NdTe with first 
principle studies. Understanding of measured physical properties of NdTe compound is mostly studied. It is also important 
that thermodynamic and electronic band structure calculations are necessary to figure out many properties of compound. 
We have also predicted sound velocities, melting points and Debye temperatures for cubic structures of NdTe compound. 
The thermodynamical properties of the considered structures are obtained through the quasi-harmonic Debye model. In 
order to gain further information, the pressure and temperature- dependent behaviour of the volume, bulk modulus, thermal 
expansion coefficient, heat capacity, entropy, Debye temperature and Grüneisen parameter are also  evaluated over a 
pressure range of 0 - 20 GPa  and a wide temperature range of 0-2000 K for cubic structures of NdTe compound. The 
obtained results are compared with the other reported values. 
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1.  Introduction 
 

The observations relevant to the rare-earth compounds 

which show crucial and interesting physical properties are 

performed [1-5]. Structurally, compound of NdTe has 

been studied experimentally. Imamalieva et al [6] have 

measured the lattice constants of NdTe compounds using 

differential thermal analysis (DTA) and x-ray diffraction. 

Lin et al. [7] have obtained lattice constant for NdTe using 

XRD technique and determined all the intermediate phases 

which exist in NdTe system. Schobinger et al. [8] have 

refined structural parameter values from the neutron 

intensities of rare earth monochalcogenides in different 

temperatures using neutron diffraction method. We have 

also investigated structural and elastic properties of NdTe 

[9]. 

The aim here is to determine the electronic and 

thermodynamic properties of NdTe in NaCl(B1), 

CsCl(B2) and ZB(B3) structures using ab-initio method 

using with plane-wave pseudopotential. 

 

 

2.   Method of calculation 
 

In this work, all calculations have been made using 

reliable ab initio techniques by Vienna Ab initio 

Simulation Package (VASP) based on density functional 

theory. The electron-ion interaction was taken into 

consideration in the form of the potential projector-

augmented-wave (PAW) method [10-12].  

The wave functions are expanded in the plane waves 

up to a kinetic energy cut-off 500 eV.  This cut-off value 

was found to be convenient for the electronic band 

structures and the thermodynamic properties. The 

16x16x16 Monkhorst and Pack [14] grid of k-points have 

been used for integration in capable of being reduced part 

of the Brillouin zone. The quasi-harmonic Debye model is 

used for thermodynamic calculations [15-18]. The quasi-

harmonic Debye model [15-18] has been carried out to 

calculate the thermodynamic properties of NdTe 

compounds. The non-equilibrium Gibbs function G*(V; P, 

T) can be written as follow [15]: 
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where E(V) is the total energy for per unit cell of NdTe, 

PV is the constant hydrostatic pressure condition, )(V is 

the Debye temperature and Avib is the vibrational 

Helmholtz free energy which can be written as [19-22]  
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where n is the number of atoms per formula unit, 

 TD /  describes the Debye integral. The Debye 

temperature   is meant as [22]  
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where M is the molecular mass per unit cell and BS is the 

adiabatic bulk modulus which is approximated given by 

the static compressibility [15] 
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( )f   is given by [18, 19]  
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where   is Poisson ratio. Therefore, the non-equilibrium 

Gibbs function G*(V; P, T) as a function of (V; P, T) can 

be minimized according to volume V as 
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The thermal equation-of-state (EOS) V(P, T)  can be 

obtained by solving the equation (6). The isothermal bulk 

modulus BT is given by [15] 
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The thermodynamical quantities, e.g., heat capacities 

CV at stable volume and CP at stable pressure, and entropy 

S have been calculated by applying the following relations 

[15]: 
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 TCC VP  1 ,                      (9) 

 

    TeTDnkS /1ln3/4  ,         (10) 

 

where   is the thermal expansion coefficient and   are 

the Grüneisen parameter which are given by following 

equations [15]: 
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Here is the thermal expansion coefficient is related with 

volume. It depends on the changes in the sizes of structure. 
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The Grüneisen parameter defines the volume 

changing with respect to vibrational properties. 

 

 

 

3.   Results and discussion 
 

3.1. Electronic properties 

 

Band structures have calculated for cubic structures of 

NdTe along the high symmetry directions in the first 

Brillouin zone from the calculated equilibrium lattice 

constants. Fig. 1, Fig. 2 and Fig. 3 show the band 

structures and corresponding electronic density of state 

(DOS) respectively. The position of the Fermi level is 

given at 0 eV for all cubic structures of NdTe. 

 

 

Fig. 1. Calculated energy band structure and DOS  

of NdTe(B1) versus the composition x. 
 

It can be seen easily from Fig. 1 no band gap exists 

for NdTe(B1). NdTe(B1) has semi metallic characteristic. 

DOS are compatible with band structures. 

 

 

Fig. 2. Calculated energy band structure and DOS 

 of NdTe(B1) at 50 GPa. 

 

Fig. 2 shows that the metallic characteristic for 

NdTe(B1) at 50 GPa pressure value. Due to the fact that 

NdTe(B1) stable structure shows semi metallic property 
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but  under pressure it has metallic property.  It can be also 

seen that DOS is very compatible with electronic bands. 

 

 

Fig. 3. Calculated energy band structure and DOS  

of NdTe(B2) versus the composition x. 

 

Fig. 3 shows that no band gap exists for NdTe(B2). 

Valance and conductive bands are one within the other at 

Fermi level. Considering, energy band structure of 

NdTe(B2) shows metallic characteristic. DOS are also 

compatible with electronic band structure. 

 

 

 

Fig. 4. Calculated energy band structure and DOS  

of NdTe(B3) versus the composition x. 

 

Fig. 4 shows that the metallic characteristic for 

NdTe(B3). It can be seen that DOS is very compatible 

with electronic band structures. 

 
Fig. 5. Calculated DOS of NdTe(B1). 

 

 

The total and partial density of states (DOS and 

PDOS) corresponding to the energy band structures shown 

in Fig. 5 along with the Fermi energy level where is at 0 

eV. In this figure, the lowest valance bands occur between 

about -18 eV and -15 eV and are essentially dominated by 

Te s states. Especially, other valance bands are essentially 

dominated by Nd-p and Nd-d states the energy regions just 

above Fermi energy level are dominated by unoccupied 

Nd-d states. On the contrary, for conductivity Te-p states 

are contribute to valance band. The results indicate that 

there is a strong hybridization between the Nd states and 

Te states. 

 
 

Fig. 6. Calculated DOS of NdTe(B1) at 50 GPa. 
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In Fig. 6 the total and partial density of states 

corresponding to the energy band structures for different 

pressure value which is at 50 GPa. Fermi energy level is at 

0 eV. In this graph the lowest valance bands occur at -20 

eV. Dominantly, Nd-p and Te-d electronic states are 

additive for conductivity. 

 

3.2. Thermodynamic properties  
 

Debye temperature, melting point, average, transverse 

and longitudinal sound velocities have been calculated for 

NdTe system using following equations. Debye 

temperature is given in equation 13 [23]: 
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where  is Planck’s constant, k is Boltzmann’s constant, 

NA is Avogadro’s number, n is the number of atoms per 

formula unit, ρ is the density.  

Average sound velocity ( mv ), transverse ( tv ) and 

longitudinal ( lv ) velocities are given respectively [24, 25]: 
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Sound velocities are related with elastic properties of 

solid systems. To determine the sound velocity it is 

necessary to calculate elastic constants and their some 

elastic modules like bulk modulus. In Equation 14, 

average sound velocity explains that how it depends the 

other velocities. 
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In Equation 15, transverse sound velocity is calculated 

using shear modules and density. 
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In Equation 16, longitudinal sound velocity is found 

from the bulk and shear modules with density. 

The melting temperature (Tm) has been calculated 

completely empirical relation [20]. 

 

Tm= 553+(591/Bar)C11±300K                (17) 

 

All these calculated values are represented in Table 1.  

 

 

 
Table 1. The longitudinal, transverse, average elastic wave velocity, Debye temperature 

 and melting temperature for cubic NdTe. 

 

 

Material Structure 
lv [m/s] tv [m/s] mv [m/s] D [K] mT [K] 

NdTe  B1 3541.2 1795.1 2012.1 495.442 1483±300 

NdTe B2 1815.2 1036.4 1151.7 375.764 1250±300 

NdTe B3 2813.9 1428.5 1601.1 136.110 809 ±300 

 

 

Elastic constants are used upper equations and 

structural parameters (a, B, B') are taken from Ref. [9]. 

The melting point value is 1483±300K for NdTe in 

NaCl(B1). This value is bigger than that for constituent 

atom Nd (1294K) and for constituent atom Te (722.66K). 

Some physical properties such as bulk modulus, linear 

thermal expansion coefficient and heat capacity have 

investigated under different pressure and temperature 

values by using quasi-harmonic Debye approximations for 

B1 structure of NdTe. 

 
Fig. 7. The normalized volume-pressure diagram of the cubic 

structures for NdTe at 300K, 1000K and 1600K. 
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 The normalized volume and pressure relation is 

shown in Fig. 7 for cubic NdTe. It can be seen that when 

the pressure increases from 0 GPa to 15 GPa, the volume 

variation decreases. The reason for this changing can be 

attributed to the atoms in the interlayer that become closer 

and that their interactions become stronger.  

 

 
Fig. 8. Volume versus temperature in different pressures  

for NdTe(B1). 

 

 

Volume values are plotted in spite of temperature 

values in different pressures for B1 structure of NdTe in 

Fig. 8.  For B1 structure of NdTe compound the volume 

increases with increasing temperature, but the rate of 

increase is moderate.  

 

 

 
Fig. 9. The bulk modulus-pressure diagram of NdTe. 

 

 

The relationship between bulk modulus and pressure 

at different temperatures (200, 600, and 1200K) is shown 

in Fig. 9. It can be seen easily that as the bulk modulus 

increases the pressure increases and as the temperature 

increases, the bulk modulus decreases.  

 
Fig. 10. The variation of bulk modulus(B) with  

temperatures(T) at 0 GPa. 

 

 

The variation of bulk modulus (B) with temperatures 

(T) at 0 GPa is shown in Fig. 10 B1 structure of NdTe. It 

can be seen that bulk modulus decreases with the 

temperature at a given pressure. The temperature effects 

on the bulk modulus are shown at zero pressure. One can 

obviously see that when T<150 K, bulk modulus nearly 

remains constant; when T>150 K, B decreases 

dramatically as T increases. Correspondingly, when 

T<150K, the primitive cell volume of both compounds has 

a little change; when T>150 K, the cell volume changes 

rapidly as T increases. Rapid volume variation makes the 

B rapidly decreases. It is obviously seen that the bulk 

modulus rapidly increases- almost linearly- with pressure, 

and effect of the temperature T on the isothermal bulk 

modulus is very small.   

The bulk modulus has also fitted data for the 

temperature-dependent behavior of bulk modulus to a third 

order polynomial fit: 

 

 B(T)=80.78272-0.01187T-1.44879T
2
+4.5479T

3         
(18) 

 

 
Table 2. Calculated Debye temperature θ(K) and Grüneisen 

parameter γ(K) for NdTe. 

 

T(K) P(GPa) 

0             2             4 

100   θ 

300   θ 

500   θ 

700   θ 

1000 θ 

188.46    201.42   213.05 

184.68    198.25   210.52 

180.64    194.77   207.32 

176.39    191.36   204.06 

169.72    185.33   199.02 

100   γ 

300   γ 

500   γ 

700   γ 

1000 γ 

2.131      2.034     1.949 

  2.16       2.057     1.967 

2.19        2.084     1.99 

2.222      2.109     2.014 

  2.27      2.155     2.052 
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Table 2 shows Debye temperatures and Grüneisen 

parameters at different temperatures andpressures. In the 

quasi-harmonic Debye model, the Grüneisen parameter, 

 (T), and the Debye temperature, ( )T , are two key 

quantities. These quantities at various temperatures (100, 

300, 500, 700, 1000 K) and different pressures (0, 2, 4 

GPa) are calculated and the results are shown in Table 2 

for B1 structure of NdTe compound. It is clear from Table 

2 that as temperature increases, the Grüneisen parameter 

decreases and the Debye temperature increases.  

 

 
Fig. 11. The linear thermal expansion versus temperature. 

 

The variations of the linear thermal expansion (α) 

with temperature and different pressures are shown in Fig. 

11. α values decrease as the pressure increases, at high 

temperatures. At low temperatures the thermal expansion 

coefficient increases while pressure decreases. 

 

 
 

Fig. 12. Temperature dependence of heat capacity for 

 NdTe in B1 structure. 

 

The heat capacity (Cv) versus different temperature 

values are given in Figure 12. It is seen from this  figure 

that when T< 300 K, Cv increases very rapidly with 

temperature; when T> 400 K, Cv increases slowly with 

temperature and it almost approaches a constant called as 

Dulong-Petit limit (Cv(T)~3R for mono atomic solids) at 

higher temperatures for NdTe compounds. 

 

 

4.  Conclusions 
 

In this study, the ab-initio pseudopotential 

calculations have been performed on the NdTe using the 

plane-wave pseudopotential approach to the density-

functional theory (DFT) within PAW GGA 

approximation. Our present key results are on the 

thermodynamic and electronic properties for cubic 

structures of NdTe. The electronic band structures with 

density of states are presented. NdTe in B1(NaCl) 

structure is more preferable because of the stability. The 

calculated thermodynamic parameters are also given in 

this text.  There are some theroretical and experimental 

work for NdTe(B1) [26, 27]. There is no experimental or 

theoretical work on NdTe(B2). The lattice  parameters are 

compared of NdTe(B1). Ref. {26] is a theoretical study in 

which lattice constant is 6.278 Å and Ref. [27] is 

experimental study in which lattice constant is 6.262 Å. 

Our calculated lattice constant is 6.367 Å. It could be seen 

that lattice constants are very compatible. 
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